.‘\2' 'm,;’ e . o C/%ed b? /%ﬂ//C/(ﬂ%
A PCT @ oo oo)

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 98/47271
HO04L 29/06 Al .]

(43) International Publication Date: 22 October 1998 (22.10.98)

(21) International Application Number: PCT/US97/06240 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, Fl, GB, GE,

(22) International Filing Date: 15 April 1997 (15.04.97) HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,

LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL,
PT, RO, RU, SD, SE, SG, SI, SK, TJ, T™M, TR, TT, UA,

(71) Applicant: SONY ELECTRONICS, INC. {US/US]; | Sony UG, UZ, VN, ARIPQ patent (GH, XE, LS, MW, SD, SZ,
Drive, Park Ridge, NJ 07656-8003 {(US). UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,

TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR,

(72) Inventors: SMYERS. Scott, D.; 16345 Los Gatos Boulevard GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,
#6, Los Gatos, CA 95032 (US). FAIRMAN, Bruce: 275 BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Martinez Road, Woodside, CA 94062 (US). SHIMA,

Hisato; 5~-9-12, Kitashingawa, Shinagawa-ku, Tokyo 141

ap). . Published

With international search report.

(74) Agents: HAVERSTOCK. Thomas, B. et al.; Haverstock &
Associates, Suite 420, 260 Sheridan Avenue, Palo Alto, CA
94306 (US).

(54) Title: PROTOCOL PROCESSOR FOR MANIPULATING A STREAM OF DATA

- 12 14
[arucaion 1
;10

18. } -
16+ -'Tmmvwmaws"
J:L(cavmmfm “
1
P =i -~
|| fega (Ao e - =)
ey % |
mfm ‘ | Tone mam 54 |
L X2 | 52 'Zg‘ |
3 42 34 1 l.lsa
% DX FFD RECENER LN
e e —— -

(57) Abstract

An isochronous data pipe provides a bi—directional path for data between an application and a bus structure. The isochronous data
pipe includes the ability to send. receive and perform manipulations on any isochronous stream of data, including data on any number of
isochronous channels. The isochronous data pipe is a programmable sequencer that operates on the stream of isochronous data as it passes
through the isochronous data pipe. The isochronous data pipe is programmed by an application to pexform specific operations on the stream
of data before the data is either ransmitted across the bus structure or sent to the application. thereby pre—processing and manipulating
the data before it is delivered to its destination. The operations are performed on both the packet header and the data field of the dawa
packet. The isochronous data pipe can be siopped and started on the occurence of specific events. In an alternate embodiment of the present
invention, the isochronous data pipe is programmed to send and receive both isochronous and asynchronous data, including generating
requests and appropriate packet headers.

NSDOCID: <WO ___9847271A1_!_> {

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Ceotral African Republic
Congo
Switzerland
Cate d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR

BRERRR RE

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

freland

Istael

fceland

fraly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Repubiic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
Lu
LV
MC
MD
MG
MK

ML
MN
MR
Mw
MX

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

~The tormer Yugoslav

Republic of Macedonia
Maii

Mangclia
Mauritania

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Ponugal

Romania

Russian Federation
Sudan

Sweden

Singapore

Slovenia

Slovakia

Senegal

Swaziland

Chead

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

NSDOCID: <WO ___9847271A1_1_>

10

20

' .

WO 98/47271 ‘ ‘ PCT/US97/06240

PROTOCOL PROCESSOR FOR MANIPULATING A STREAM OF DATA

FIELD OF THE INVENTION:

The present invention relates to the field of conducting isochronous data transfer
operations to and from an application over a bus structure. More particularly, the present
invention relates to the field of managing and manipulating a high-speed stream of
isochronous data to complete a data transfer operation between an application and node

coupled to a bus structure.

BACKGROUND OF THE INVENTION:
The IEEE 1394 standard, “P1394 Standard For A High Performance Serial Bus,”

Draft 8.01v1, June 16, 1995, is an international standard for implementing an inexpensive
high-speed serial bus architecture which supports both asynchronous and isochronous
format data transfers. Isochronous data transfers are real-time transfers which take place
such that the time intervals between significant instances have the same duration at both
the transmitting and receiving applications. Each packet of data transferred isochronously
is transferred in its own time period. An example of an ideal application for the transfer
of data isochronously would be from a video recorder to a television set. The video
recorder records images and sounds and saves the data in discrete chunks or packets. The
video recorder then transfers each packet, representing the image and sound recorded over
a limited time period, during that time period, for display by the television set. The IEEE
1394 standard bus architecture provides multiple channels for isochronous data transfer
between applications. A six bit channel number is broadcast with the data to ensure
reception by the appropriate application: This allows multiple applications to
simultaneously transmit isochronous data across the bus structure. Asynchronous transfers
are traditional data transfer operations which take place as soon as possible and transfer an

amount of data from a source to a destination.

NSDOCID: <WO__9847271A1_i_>

. "

10

15

20

4 1]

WO 98/47271 ‘ ‘ PCT/US97/06240

The IEEE 1394 standard provides a high-speed serial bus for interconnecting digital
devices thereby providing a universal I/O connection. The IEEE 1394 standard defines a
digital interface for the applications thereby eliminating the need for an application to
convert digital data to analog data before it is transmitted across the bus. Correspondingly,
a receiving application will receive digital data from the bus, not analog data, and will
therefore not be required to convert analog data to digital data. The cable required by the
IEEE 1394 standard is vefy thin in size compared to other bulkier cables used to connect
such devices. Devices can be added and removed from an IEEE 1394 bus while the bus is
active. If a device is so added or removed the bus will then automatically reconfigure
itself for transmitting data between the then existing nodes. A node is considered a logical
entity with a unique address on the bus structure. Each node provides an identification
ROM, a standardized set of control registers and its own address space.

The IEEE 1394 standard defines a protocol as illustrated in Figure 1. This protocol
includes a serial bus management block 10 coupled to a transaction layer 12, a link layer
14 and a physical layer 16. The physical layer 16 provides the electrical and mechanical
connection between a device or application and the IEEE 1394 cable. The physical layer
16 also provides arbitration to ensure that all devices coupled to the IEEE 1394 bus have
access to the bus as well as actual data transmission and reception. The link layer 14
provides data packet delivery service for both asynchronous and isochronous data packet
transport. This supports both asynchronous data transport, using an acknowledgement
protocol, and isochronous data transport. providing real-time guaranteed bandwidth
protocol for just-in-time data delivery. The transaction layer 12 supports the commands
necessary to complete asynchronous data transfers, including read, write and lock. The
serial bus management block 10 contains an isochronous resource manager for managing
isochronous data transfers. The serial bus management biock 10 also provides overall
configuration control of the serial bus in the form of optimizing arbitration timing,
guarantee of adequate electrical power for all devices on the bus, assignment of the cycle
master, assignment of isochronous channel and bandwidth resources and basic notification

of errors.

NSDOCID: <WGC___S847271A1 _|_>

10

20

25

30

X

WO 98/47271 ‘ . PCT/US97/06240

To initialize an isochronous transfer, several asynchronous data transfers may be
required to configure the applications and to determine the specific channel which will be
used for transmission of the data. Once the channel has been determined, buffers are used
at the transmitting application to store the data before it is sent and at the receiving
application to store the data before it is processed. In a general purpose host or peripheral
implementation, the format of the transmitted data is not in a form which can be used by
the application. In most cases, a general purpose processor must preprocess the stream of
data before sending it to the application. Often, the preprocessing task consumes
considerable computational power which can make it impossible to. effectively handle the
real time stream of data.

What is needed is an isochronous data pipe that provides the ability to the
application to manage and manipulate a high-speed stream of data being sent from or
received by the application over a bus structure. Wh. s further needed is an isochronous
data pipe which allows the application to transmit and receive data in its native format,
thereby improving the ability of the application to effectively handle a continuous stream

of data over time.

SUMMARY OF THE INVENTION:

An isochronous data pipe provides a bi-directional path for data between an
application and a bus structure. The isochronous data pipe includes the ability to send.
receive and perform manipulations on any isochronous stream of data, including data on
any number of isochronous channels. The isochronous data pipe is a programmable
sequencer that operates on the stream of isochronous data as it passes through the
isochronous data pipe. The isochronous data pipe is programmed by an application to
perform specific operations on the stream of data before the data is either transmitted
across the bus structure or sent to the application, thereby pre-f)rocessing and manipulating
the data before it is delivered to its destination. The operations are performed on both the
packet header and the data field of the data packet. The isochronous data pipe can be

stopped and started on the occurrence of specific events. In an alternate embodiment of

-3 -

NSOOCID: <WO___9847271A1_L_>

v}

»

10

15

)
(9]

WO 98/47271 . . PCT/US97/06240

the present invention, the isochronous data pipé is programmed to send and receive both
isochronous and asynchronous data, including generating requests and appropriate packet

headers.

BRIEF DESCRIPTION OF THE DRAWINGS:
Figure 1 illustrates a protocol defined by the IEEE 1394 standard.

Figure 2 illustrates a block diagram schematic of a link circuit including an
isochronous data pipe according to the present invention and an asynchronous data pipe.

Figure 3 illustrates a register file within the isochronous data pipe.

Figure 4 illustrates a register file within the isochronous data pipe sequencer.

Figure 5 illustrates an example of an isochronous data stream showing the

isochronous recording format.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT:

An isochronous data pipe transmits and receives data for an application across a
bus structure. Preferably, the bus structure is an [EEE 1394 standard bus structure. The
isochronous data pipe is programmable and will execute a series of instructions on a
strearn of data in order to perform manipulations on the data required by the application.
In a link circuit, an isochronous data pipe is included for transmitting and receiving
isochronous data and an asynchronous data pipe is included for trans—itting and receiving
asynchronous data. The data from the isochronous data pipe and the asynchronous data
pipe is multiplexed onto the bus structure. The data received from the bus structure is
demultiplexed to the isochronous data pipe and the asynchronous data pipe. Alternatively,
the isochronous data pipe is programmed to transmit and receive both isochronous and
asynchronous data.

A link circuit including an isochronous data pipe (IDP), according to the present
invention, and an asynchronous data pipe is illustrated in Figure 2. The link circuit 10
provides a link between applications 12 and 14 and a bus structure 58. The applications
12 and 14 are both coupled to a system bus 16. The system bus 16 is coupled to both the
isochronous data pipe 20 and the asynchronous data pipe 26. The applications 12 and 14

-4 -

ISDOCID: WO ____9847271A1 _I_>

L%

10

15

WO 98/47271 ‘ ' ‘ PCT/US97/06240

are also both coupled to an applications interface circuit 18. The applications interface
circuit 18 is coupled to a set of control registers 38, to the isochronous data pipe 20, to the
asynchronous data pipe 26 and to a link core 44. Both the isochronous data pipe and the
asynchronous data pipe 26 include a register set 24 and 28, respectively. The outbound
FIFO 30 corresponds to the isochronous data pipe 20 and is coupled between the
isochronous data pipe 20 and a multiplexer 40. The outbound FIFO 32 corresponds to the
asynchronous data pipe 26 and is coupled between the asynchronous data pipe 26 and the
multiplexer 40. The control registers 38 are also coupled to both the iSochronous data
pipe 20 and the asynchronous data pipe 26. An inbound FIFO 34 is coupled to a
demultiplexer 42. The demultiplexer 42 is coupled to both the isochronous data pipe 20
and the asynchronous data pipe 26.

The link core 44 includes a transmitter 46, a receiver 48, a cycle timer 50, a cycle
monitor 52, a CRC error checking circuit 54 and a physical interface circuit 56 for
physically interfacing to the bus structure 58. The transmitter 46 is coupled to the
multiplexer 40, to the cycle timer 50, to the CRC error checking circuit 54 and to the
physical interface circuit 56. The receiver 48 is coupled to the inbound FIFO 34, to the
cycle monitor 52, to the CRC error checking circuit 54 and to the physicai interface circuit

56. The cycle timer 50 is coupled to the cycle monitor 52. The physical interface circuit

- 56 1s coupled to the bus structure 38.

The link circuit 10, illustrated in Figure 2, includes a single FIFO 34 for all
incoming data, both isochronous and asynchronous, a FIFO 30, dedicated to the
isochronous data pipe 20 for outbound data and a FIFO 32, dedicated to the asynchronous
data pipe 26 for outbound data. The outbound data from the FIFOs 30 and 32 are
multiplexed, by the multiplexer 40. through the link core 44 and onto the bus structure 58.
The inbound data from the FIFO 34 is directed to either the isochronous data pipe 20 or
the asynchronous data pipe 26, by the demultiplexer 42, as will_ be discussed below.

Preferably, the inbound FIFO 34 is thirty-three bits wide, the outbound FIFO 30 is
thirty-four bits wide and the outbound FIFO 32 is thirty-three bits wide. In each of the
FIFOs 30, 32 and 34, bits 0 through 31 are designated to carry data and bit 32 is

designated to carry a packet boundary marker. For outbound packets. the isochronous data

-5-

NSOGCID: <WO__8847271A1 _1_>

O

10

15

[88)
n

30

WO 98/47271 ’ . PCT/US97/06240

- pipe 20 and the asynchronous data pipe 26 set the bit 32 to a logical high voltage level on-

the first quadlet of each packet. For inbound packets, the link core 44 sets the bit 32 to a
logical high voltage level on the first quadlet of each packet.

In the outbound FIFO 30, corresponding to the isochronous data pipe 20, bit 33 is
designated to indicate an isochronous cycle boundary. The isochronous data pipe 20 sets
the bit 33 to a logical high voltage level on the first quadlet of the first isochronous packet
in each isochronous cycle. When the link core 44 receives a quadlet of data with the bit
33 set to a logical high voltage level, it delays until the next cycle start, then transmits all

isochronous packets in the outbound FIFO 30 until another quadlet with the bit 33 set to a

logical high voltage level is detected.

To transmit application data, from one of the applications 12 and 14, onto the bus
structure 58, the isochronous data pipe 20 and the asynchronous data pipe 26 both generate
appropriate header information and append the appropriate application data to form a
packet in the form required by the bus structure 58. These packets are then stored in the
appropriate FIFO 30 and 32 for transmission onto the bus structure 58.

The asynchronous data pipe 26 is preferably implemented as described in co-
pending U.S. Patent Application Serial Number 08/612,321 filed on the same date as the
present application and entitled "Asynchronous Data Pipe F or Automatically Managing
Asynchronous Data Transfers Between An Application And A Bus Structure,” which is
hereby incorporated by reference. The asynchronous data pipe 26 automatically generates
transactions necessary to complete asynchronous data transfer operations for an application
over a bus structure. The asynchronous data pipe 26 includes a register file 28 which is
programmed by the application. The register file 28 allows the application to program
requirements and characteristics for the data transfer operation. The register file 28
includes bus speed. transaction label, transaction code, destination node identifier,
destination offset address, length of each data packet, packet counter, packet counter bump
field, control field and a status field.

After the register file 28 is programmed and initiated by the application, the
asynchronous data pipe 26 automatically generates the read or write transactions necessary

to complete the data transfer operation over the appropriate range of addresses, using the

-6 -

NSOCCID: <WQ ___ 9B4T271AY_I_>

10

15

20

WO 98/47271 . . PCT/US97/06240

information in the register file as a template for generating the transactions and headers.

"The asynchronous data pipe 26 auiomatically increments the value in the destination offset

address field for each transaction according to the length of each data packet, unless an
incrementing feature has been disabled, signalling that the transactions are to take place at
a single address. The packet counter value represents the number of transactions
remaining to be generated. The packet counter value is decremented after each packet of
data is transferred. The packet counter bump field allows the application to increment the
packet counter value by writing to the packet counter bump field.

Multiple asynchronous data pipes can be included within a link circuit 10 for

managing multiple asynchronous data transfer operations. In such a system, each

‘asynchronous data pipe has its own unique transaction label value or range of values. The

multiplexer 40 multiplexes the transactions and data packets from the asynchronous data
pipes and the isochronous data pipe onto the bus structure 58. The demultiplexer 42
receives signals and data packets from the bus structure 58 and routes them to the
appropriate asynchronous data pipe or isochronous data pipe, using the transaction code
and the transaction label values.

In the link circuit 10 there is only one isochronous data pipe 20. This isochronous
data pipe 20 can handle multiple isochronous channels and at the data interface, the
isochronous data pipe 20 can interact with more than one application. Therefore, the
isochronous data pipe 20 can support more than one stream of isochronous data, where
each stream of data is made up of one or more isochronous channels. In an alternative
embodiment, as will be described below, the isochronous data pipe 20 can also send and
receive asynchronous data, thereby performing the functions of an asynchronous d:ta pipe.

The link core 44 accepts packets of data from the outbound FIFOs 30 and 32,
creates packets which comply with the format required by the bus structure 58 and then
transfers the packets through the physical interface 56 onto the bus structure 58. The link
core 44 transmits one isochronous cycle’s worth of data from the outbound isochronous
FIFO 30 on each isochronous cycle. When not transmitting isochronous data, the link core

44 transmits asynchronous packets from the outbound asynchronous FIFO 32.

ISDOCID: <WG___9847271A1_I _>

10

15

WO 98/47271 . . PCT/US97/06240

The link core 44 transmits all received packets to the inbound FIFO 34. Unless the
link core 44 is operating in a Snoép mode, the link core 44 only receives asynchronous
packets addressed to the appropriate node ID and isochronous packets with the proper
channel numbers. In the snoop mode, the link core 44 receives all packets regardless of
their destination node ID or isochronous channel number.

The isochronous data pipe 20 provides a bi-directional data path for application
data which is to be transmitted over the bus structure 58. A stream of isochronous data is
made up of data on one or more isochronous channels. The isochronous data pipe 20 can
operate on any arbitrary stream of isochronous data, containing data on any number of
isochronous channels. The isochronous data pipe 20 is a programmable sequencer that
operates on a stream of isochronous data from the bus 16 to the outbound isochronous
FIFO 30 or from the receive FIFO 34 to the bus 16.

For each quadlet of data transferred, the isochronous data pipe 20 executes a
predetermined number of instructions to manipulate the data as necessary. These
instructions can operate on the isochronous data block packet. When sending data to be
output on the bus structure 58, the stream of data output by the isochronous data pipe 20,
is dependent on both the stream of data input to the isochronous data pipe 20 and the
manipulations performed on the data by the isochronous data pipe 20. Correspondingly,
when receiving data from the bus structure 58, the stream of data output by the
isochronous data pipe 20 on the bus 16, is dependent on the stream of data input to the
isochronous data pipe 20 and the manipulations performed on the data by the isochronous
data pipe 20.

The isochronous data pipe 20 Supports sevéral scheduling features for the starting
and stopping of isochronous data transfers, depending on the current mode of operation of
the isochronous data pipe. With proper programming, the isochronous data pipe supports
the isochronous recording data formats, as defined in the SCSI-3 Serial Bus Protocol
standard. This protocol defines how to label an isochronous stream of data when it is
recorded so that it can be recreated precisely when played back. The isochronous data
pipe is a programmable data handling engine in the isochronous data path. With proper

programming, this engi:ic implements the isochronous recording formats, plus includes the

-8 -

NSDCCID: <WO ____3847271A1_|_>

10

WO 98/47271 . ‘ PCT/US97/06240

ability to filter the data by deleting quadlets, or performing specific operations on each
quadlet transferred to or from the bus structure 58.

The FIFO interface for both the isochronous data pipe 20 ‘and the asynchronous
data pipe 26 is coupled directly to a FIFO 30 and 32, respectively. The FIFO 30 is
dedicated to the data path controlled by the isochronous data pipe 20. The FIFO 32 is
dedicated to the data path controlled by the asynchronous data pipe 26. The link interface
for the isochronous data pipe 20 and the asynchronous data pipe 26 are both coupled
through the multiplexer 40 and the demultiplexer 42 to the link core 44. The data
presented from the isochronous data pipe 20 and the asynchronous data pipe 26 to the link
core 44 is in a format required by the link core function. Both the isochronous data pipe
20 and the asynchronous data pipe 26 expect the data coming from the link core 44 to be
in the format defined by the link core specification. If additional logical blocks are
included within a system, each logical block is coupled to the link core 44 through the
multiplexer 40 and the demultiplexer 42. For example, multiple asynchronous data pipes
could be included within a system. In a system with multiple asynchronous data pipes,
each of the asynchronous data pipes are coupled to the multiplexer 40 through the FIFO
32. In such a system, an additional multiplexer is included between the asynchronous data
pipes and thevFIF O 32 for multiplexing packets of data into the FIFO 32.

When directing data from the isochronous data pipe 20, the multiplexer 40
recognizcs that when data is available from the isochronous data pipe. the multiplexer 40
transmits one packet of data per isochronous cycle per channel. The data sent from the
link core 44 to the isochronous data pipe 20 and the asynchronous data pipe 26 is routed
through the FIFO 34 and the demultiplexer 42. The demultiplexer 42 does not change any
information when it routes packets from the link core 44 to the appropriate one of the

isochronous data pipe 20 or the asynchronous data pipe 26. All information produced by

- the link core is sent to the destination logical block. The isochronous data pipe 20 and the

asynchronous data pipe 26 will perform all necessary manipulation of the data from the
link core 44 before this data is transferred to one of the applications 12 and 14, which may
include stripping header information required by the protocol for the bus structure 58. For

outbound data, the isochronous data pipe 20 and the asynchronous data pipe 26 both

-9 .

1SOCCID: <WO___9847271A1 _i_>

10

15

WO 98/47271 . ’ PCT/US97/06240

prepare data from the application so that it is in the proper form, as required by the link
core 44. Both the isochronous data pipe 20 and the asynchronous data pipe 26 will
generate the appropriate header information and embed that in the data from the
application before sending the data to the link core 44 through the muliplexer 40.

For both the isochronous data pipe 20 and the asynchronous data pipe 26, the link
interface produces and consumes data in a format which is compatible with the
requirements of the link core 44 function. During a data send operation, the isochronous
data pipe 20 will generate the required bus structure specific header information and
embed it in the data from the application, as required by the link core 44. During a data
receive operation, for data moving from the link core 44 to either the isochronous data
pipe 20 or the asynchronous data pipe 26, the isochronous data pipe 20 and the
asynchronous data pipe 26 both accept that data in the format provided by the link core
44, In other words, no manipulation of the data is required to translate data from the link
core 44 to the isochronous data pipe 20 or the asynchronous data pipe 26.

When only one logical block is included within a system, that logical block can be
connected directly to the link core 44. When there are multiple logical blocks within a
system, the system includes an appropriate multiplexer 40 and demultiplexer 42 between
the logical blocks and the link core 44. The multiplexer 40 is responsible for taking the
data at the link interfaces of the multiple logical blocks and multiplexing that data through
the link core 44 and onto the bus structure 58 on a packet by packet basis. This
information is application specific and is routed to the bus structure in a priority set by the
transferring operation. Each isochronous data packet is sent by the multiplexer 40 during
its appropriate time period. The demultiplexer 42 uses the value in the transaction code
and the channel number fields of each packet received from the bus structure 58 to route
the packet to the appropriate logical block 20 or 26. If there is no more than one
isochronous data pipe 20 and one asynchronous data pipe 26, then the transaction code is
all that is required to route the packet appropriately. The demultiplexer 42 will first read
the transaction code to determine that the packet is asynchronous data and should be
routed to an-asynchronous data pipe. If there is more than one asynchronous data pipe

within the system, the demultiplexer 42 then uses the value in the transaction label of the

- 10 -

NSDOCID: <WO____39847271A1__>

10

15

N
n

WO 98/47271 ' ‘ PCT/US97/06240

asynchronous response packet header to route the packet to the proper asynchronous data
pipe.

The isochronous data pipe of the present inventjon is a bidirectional data path
between a corresponding FIFO and the link core 44. With proper programming, the
isochronous data pipe supports the isochronous data recording format, as documented in
the SCSI-3 Serial Bus Protocol (SBP) standard and allows programmable manipulation of
the data in the isochronous stream.

When transferring data through the corresponding FIFO 30 to the link core 44 or
when receiving data from the demultiplexer 42, the isochronous data pipe 20 operates on
each quadlet of data independently. The isochronous data pipe 20 performs a
programmable number of instructions on each quadlet in order to manipulate the data, as
necessary. The possible instructions which can be performed by the isochronous data pipe
20 are included within an instruction set, which will be discussed in detail below. The
isochronous data pipe 20 also includes an independent, dedicated register file 24 which
will also be discussed in detail below.

If a bus reset occurs while the isochronous data pipe 20 is transferring data, the
isochronous data pipe 20 operation resumes exactly where it left off when the next cycle
start packet appears on the bus structure 58. Note that although the processing of
isochronous data resumes immediately, the embedded application reallocates any channel
numbers, bandwidth and any connections in use prior to the bus reset, as defined in the
IEEE 1394 standard and the IEC standard for consumer devices.

The isochronous data pipe 20 is controlled by an independent, dedicated register
file, as illustrated in Figure 3. This register file is programmed by the originating
application and used to generate headers, instructions and transactions necessary to
complete an isochronous data transfer operation across the bus structure 58. The register

file 80 includes 120 bytes of data, numbered hexadecimally 0 through 77. In Figure 3, the

register file 80 is illustrated in a table format with 30 horizontal rows. each including four

bytes of data. An offset column 82 is included in Figure 3, to show the offset of the

beginning byte in each row from the address of the beginning of the register file 80. A

-1l -

NSDOCID: <WO____98472T1A1 _i_>

10

15

WO 98/47271 . ' PCT/US97/06240

read/write column 84 is also included to show whether the fields in each row can be either
read from and written to or read from only.

The cycle time field cycle_time is a twenty bit field within bytes 0-2 of the register
file 80. The cycle time field can be read from and written to. When the control event
field, which will be discussed below, contains the cycle number value, the cycle time field
holds the cycle time on which the isochronous data pipe 20 will start or stop transfeniﬂg
isochronous data.

The control field is a thirty-two bit field within bytes 4-7 of the register file 80.
The control field can be read from and written to. The control field includes an event
field, an output enable field, a stop on error field, a transmit enable field and a go field.
The event field is a four bit field in bits 28-31 of the control register. The value in the
event field defines the bus event for the isochronous data pipe 20 to use as a trigger.
When this bus event occurs, the isochronous data pipe transfers the value stored in the
pending channel mask register pending_ch_mask to the current channel mask register
ch_mask. The event field is encoded for the possible bus events as illustrated in Tabie I

below.

TABLE I

value l : meaning
0 immediately
1 cycle number
2 reserved
3 reserved
4-F reserved

~ Therefore, when the event field holds a value equal to 0, the isochronous data pipe will

then start or stop immediately. When the event field holds a value equal to 1, the
isochronous data pipe will then start or stop, as specified by the value in the cycle time

field, as discussed above.

- 12 -

NSDOCID: <WO___9847271A1_i_>

10

15

20

25

30

WO 98/47271 . . . PCT/US97/06240

The output enable field is a four bit field in bits 4-7 of the control field. When
any of the bits in the output enable field are set to a logical high voltage level, then the
corresponding DMA channel will assure that the prefill FIFO is kept full and the
isochronous data pipe 20 will dispatch to the control store output instruction whenever
there is an empty quadlet in the outbound FIFO 30.

The stop on error field is a one bit field in bit 3 of the control field. When the
stop on error bit is set to a logical high voltage level, the i1sochronous data pipe 20 will
stop the current operation on the first error encountered by setting the value in the channel
mask register to a logical low voltage level. Possible errors when sending data include a
FIFO underrun or a missing cycle start packet. Possible errors when receiving data
include a FIFO overrun. a missing cycle start packet, a data CRC error, an error in packet
format or a channel missing error. N

The transmit enable field is a one bit field in bit 1 of the control field. When the
transmit enable bit is set to a logical high voltage level, the isochronous data pipe 20 will
begin executing the output control store program. When the go bit is at a logical low
voltage level or the output control store program executes a return instruction, the transmit
enabte bit will be cleared.

The go field is a one bit field in bit 0 of the control field. The application sets the
go bit to a logical high voltage level to enable the isochronous data pipe to watch for an
event. When the spéciﬁed event condition is satisfied, the isochronous data pipe 20
transfers the contents of the pending channe! mask register to the current channel mask
register.

The status tield is a thirty-two bit field within bytes 8-B of the register file 80.
The status field can be read from and written to. The status field contains status
information which reports the current state of the isochronous data pipe 20. The bits 0-7
of the status field correspond to the bits 0-7 of the control field and include an output

field, a stop on error field, a transmit enable field and an active field. The value of these

~ fields in the status register indicate the current operational state of the isochronous data

pipe 20. The bits 8-27 of the status field are reserved. Within the status field, the active

field is a one bit field in bit O of the status field, which indicates whether or not the

- 13 -

NSCOCID: <WO__ 9847271A1_1 _>

10

15

20

25

WO 98/47271 ‘ : ‘ PCT/US97/06240

isochronous data pipe is active. Preferably, if the active bit is equal to a logical high
voltage level, the isochronous data pipe is currently active and transferring data. If the
active bit is equal to a logical low voltage level, the isochronous data pipe is not currently
active. The error field is a four bit field in bits 28-31 of the status field. When the
isochronous data pipe 20 halts operation due to an error, the error field contains a value
indicating thé error condition. The error field is only valid when the active bit is equal to
a logical low voltage level. The possible values for the error field and the error to which

they correspond are listed in Table II below.

TABLE 11
Value Error
—_—-——_—_——___—
0 FIFO overrun
1 FIFO underrun

Missing cycle start packet
Data CRC error

Missing cycle start packet

W I W N

Error in packet format

The pending channel mask high field pending_ch_mask hi is a four byte field
within bytes 20-23 of the register file 80. The pending channel mask low field
pending_ch_mask_lo is a four byte tield within bytes 24-27 of the register file 80.
Together, the two pending channel mask fields pending ch mask hi and
pending_ch_mask_lo form an eight byte field containing the mask of isochronous channel

numbers for the isochronous data pipe 20 to receive. The isochronous data pipe 20

transfers the contents of this field to the channel mask register when the programmed

trigger event occurs. The bit assignment of the pending channel mask field is the same as

- 14 -

NSCOCID: WG ___9847271A1_)_>

10

15

20

25

WO 98/47271 ‘ ‘ PCT/US97/06240

the bit assignment of the channels available register defined in chapter eight of the IEEE .
1394 standard. '

The current channel mask high field ch_mask hi is a four byte field within bytes
28-2B of the register file 80. The current channel mask low field ch_mask lo is a four
byte field within bytes 2C-2F of the register file 80. Together, the two current channel
mask fields ch_mask_hi and ch_mask_lo form an eight byte ﬁeld containing the channel
mask currently in operation, with each bit within the current channel mask fields
representing an isochronous channel. The channel mask field is only loaded from the
pending channel mask field when a trigger event occurs. The isochronous data pipe 20
ignores received isochronous channel numbers for which the corresponding bit in the
current channel mask field is set to a logical high voltage level. ‘

The control store output field CS_output is a one byte field within byte 34 of the
register file 80. The control store output field CS_output contains the control store address
within the control store memory, to which the isochronous data pipe 20 dispatches
whenever there is an empty quadlet in the outbound FIFO 30 and the isochronous data
pipe 20 is not currently receiving an isochronous packet of data. The control store
memory contains instructions used by the isochronous data pipe in performing its
operations on a stream of data.

The control store cycle start address field CS_addr_CS is a one byte field within
byte 3/ of the register file 80. The control store address field CS_addr CS contains the
control store address to which the isochronous data pipe branches when the cycle start
packet is received. The first quadlet available to the control store program is the first
quadlet of the cycle start packet. The control store address fields CS_addr_0 through
CS_addr_63 are each one byte fields within bytes 38 through 77 of the register file 80.
These fields contain the control store address store where the isochronous data pipe is to
branch upon receiving data on the isochronous channe! matching the byte number of the

control store address field. For example, the contro!l store address field CS_addr_10

~ contains the address in the control store where the isochronous data pipe is to branch upon

receiving data on the isochronous channel number 10. The isochronous data pipe ignores

all isochronous channels for which the corresponding value in the control store address

- 15 -

ISCOCHD: <WQ___8847271A1 1_>

WO 98/47271 . ' . PCT/US97/06240

field is equal to FFh. It should be noted that the behavior of the control store address
field is the same when transmitting as when receiving isochronous data.
There are sixty-four potential isochronous channels 0-63. The control store address
fields CS_addr_0O through CS_addr_63 each correspond. to an isochronous channel and
S contain the address in the control store memory where the instructions for that isochronous
channel begin. Accordingly, when the isochronous data pipe 20 recetves data on a
particular isochronous channel, the isochronous data pipe 20 branches to the address
contained in the corresponding control store address field to obtain the instructions for
manipulating the data for that channel. Isochronous channels for which the corresponding
10 value in the control store address field is equal to FFh are ignored.
A stream of isochronous data is made up of one or more isochronous channels.
The isochronous data pipe 20 receives isochronous channels for which the corresponding
bit in the current channel ma-.. field is set to a logical high voltage level. The
isochronous data pipe 20 transmits isochronous data according to the control store program
15 beginning at the control store address pointed to by the value in the control store output
CS_output register. For example, if the isochronous channels 3, 4 and 5 exist on the bus
structure 58 and the application wants the isochronous data pipe 20 to combine channels 3
and 5 into a single stream without performing any manipulation on the data contained in
these isochronous channels, then the application programs a value of "10h,"” for example.
20 into the control store address fields CS_addr 3 and CS_addr 5. At the control store

address "10h," the application then loads an instruction sequence as shown in Table [II.

- 16 -

NSDOCID: <WO ___9847271A1_I_>

10

15

20

WO 98/47271 ‘ : ‘ PCT/US97/06240

TABLE III

SHIFTI BUS_IN, 16, DO ;Shift to get the data length value

ADDI Do, 3, DO ;Wrap up

ANDI DO, FFFC, DO - ;and mask to get count plus pad

BZ HALT - ;Done if data length equals zero
CONT: MOVE BUS_IN, DATA_0 ;Move a data word to DMA channel O

SUBI DO, 4, DO :Decrement byte count

BNZ CONT :Continue if not zero
HALT: - RET ;:Finished with this packet

The application then programs a value of "28h" into the pending channel mask,
then writes a value of "1" into the control field. This value in the control field indicates
an event of immediate with no DMA channels programmed for output. The result is that
the isochronous data pipe 20 immediately shifts the value of the pending channel mask
field into the current channel mask field. Because the bits 3 and 5 are now set to a logical
high voltage level in the current channel mask field, the isochronous data pipe 20 will
begin processing the isochronous channels 3 and 5 according to the control store program
beginning at address "10h.” Note that in this example both the control store fields
CS_addr_3 and CS_addr_5 contain a value of "10h," so that the data for both of the
isochronous channels 3 and 5 is processed according to the same control store instruction
sequence, beginning at the address "10h."

The control store program illustrated in Table III is a program which moves the
data from the receive FIFO 34 onto the DMA channel 0 on the bus 16. The isochronous
data pipe 20 ignores any data received on isochronous channel 4 because the bit 4 in the
current channel mask field is not set to a logical high voltage level.

In the last line of the control store program illustrated in Table III, a return

instruction is included. In all cases. the return instruction causes the isochronous data pipe

20 to perform the same tasks; namely, the isochronous data pipe decrements the value of

the stack pointer and dispatches to the instruction within the stack which the stack pointer
is currently pointing to. If the stack pointer is equal to zero when a return instruction is

executed, the isochronous data pipe 20 halts operation until the next enabled isochronous

17 -

NSDOCID: <WO ___9847271A1_1_>

10

15

20

WO 98/47271 . ' . PCT/US97/06240

channel is received or a cycle start packet is received. If the isochronous data pipe 20 is -
executing an output control store program, a return instruction will cause the isochronous
data pipe to resume operation at the instruction where the output program was interrupted
by the received isochronous packet.

The isochronous data pipe is actually a programmable sequencer which can be
programmed to perform operations on the received stream of isochronous data. The
isochrbnous data pipe sequencer contains a register file as illustrated in Figure 4. Within
the register tile 90, the immediate value register IMM is a thirty-four bit register with a
register code of “0" which can only be a source register. The immediate value register
IMM specifies that the thirty-four bit immediate field of the instruction contains the source
data for the given operation.

The bus input register BUS_IN is a thirty-two bit register with a register code of
“1" which can only be a source register. Accessing the bus input register BUS IN as a
source of an operation clocks one quadlet of data from the receive FIFO 34 through the
isochronous data pipe 20. Subsequent accesses to the bus input register BUS IN access
subsequent guadlets of data in the inp:** data stream.

The bus output register BUS_OUT is a thirty-four bit register with a register code
of “2" which can only be a destination register. Accessing the bus output register
BUS_OUT as a destination of an operation clocks one quadlet of data through the
isochronous data pipe 20 to the outbound isochronous FIFO 30. Subsequent accesses to
the bus output register BUS_OUT clock subsequent quadlets of data in the output data
stream.

The data registers DO-D7 are each thirty-four bit registers with a register code of
“4n, nsvotet, "7, "8, "9, "A" and "B", respectively, which can be either a source or
destination register. The data registers D0-D7 can be used as the source or destination
register for any operation.

The data interface registers DATA 0-DATA 3 are each thirty-two bit registers

~ with a register code of 10", “11", *12" and “13", respectively. which can be either a

source or destination register. Each of the data interface registers DATA _0-DATA_3

- 18 -

NSDCCID: <WO ___ 984727 1A1 _Il_>

10

15

20

30

WO 98/47271 ‘ . PCT/USY97/06240

access a different DMA channel. Use of these registers is to be consistent with the
programming of the output enable field DMA_out_en. -

The isochronous data pipe 20 implements a stack made up of a linear list of eight
one byte registers. The stack registers are only accessed during a branch to subroutine
instruction and a return instruction. In the preferred embodiment of the present invention,
the stack registers S0-S7, each have a respecfive register address 0-7. Alternatively, the
actual number of stack registers will vary depending on the specific implementation.
When the control store program is loaded, the stack pointer is automatically initialized to a
value of zero, thereby pointing to the corresponding stack register SO.

When the isochronous data pipe 20 branches to a subroutine, the isochronous data
pipe 20 decrements the stack pointer, stores the address of the next control store
instruction into the current stack register, increments the value of the stack pointer. then
branches to the control store instruction contained in the low order byte of the source field.
When the isochronous data pipe 20 executes a return instruction, it decrements the stack
pointer, then the isochronous data pipe 20 branches to the control store instruction
contained in the current stack register. If the stack pointer is decremented when it
contains a value equal to zero, the value of the stack pointer will remain at zero and the
isochronous data pipe 20 will halt operation until it receives an isochronous data packet or
cycle start packet. When the isochronous data pipe is executing an output control store
program and a cycle start packet or enabled isochronous channel is received, the
isochronous data pipe 20 will interrupt execution of the output control store program, save
the address of the current instruction in the stack, decrement the stack pointer and then
dispatch to the proper location to handle the received packet.

Each isochronous control store instruction includes an OpCode field. a source field,
a destination field. an immediate value field, an immediate field and a reserved field. The
OpCode field is a six bit field which describes an operation to perform, as will be

discussed below in reference to Figure 5. The source field src is a four bit field which

" specifies a register or immediate value which contains the source value for the specified

operation. The destination field dest is a four bit field which specifies a destination

register for the specified operation. The immediate value field imm_val is a one bit field

- 19 -

NSDOCID: <WO____3847271A1_|_>

WO 98/47271

’ PCT/US97/06240

which when set to a logical high voltage level, specifies that one of the operands is

contained in the immediate field. The immediate field imm is a thirty-four bit field which
specifies an immediate value to use for an operation if the immediate value field imm_val
is set to a logical high voltage level. In the preferred embodiment of the present

5 invention, the reserved field includes thirteen bits which are reserved for use in alternate

embodiments of the isochronous data pipe 20.

The operation codes which are implemented by the isochronous data pipe sequencer

during manipulation of a data stream and can be included in the OpCode field are listed in

Table IV below. The isochronous data pipe 20 will store the results for any of these

10 operations into any register which is capable of being a destination, as illustrated in Figure

4, including the data registers DO-D7, the outbound isochronous FIFO 30 and any DMA

channel which is configured as a destination.

TABLE IV
15 Name Mnemonic Vaiue Function
(HEX)
e e e it —_— — —
e —————————
MOVE MOVE 0 moves value in stc register to dest register
MOVEI |
MOVE MOVEM 1 ‘moves a block of quadls “etween the source and destination
Multiple (i.e.. between a DMA re..:.ter and the outbound FIFO)
2
20 3
AND AND 4 ANDs the value in the src register to the immediate value or
ANDI the vajue in the dest register, and stores the resuit into the
dest register
OR OR 5 ORs the value in the src register to the immediate value or
ORI the value in the dest register. and stores the result into the
dest register
SHIFT SHIFT 6 SHIFTS the value in the src register by the immediate value
SHIFTI or the value in the dest register and stores the result into the
dest register; positive values cause the isochronous data pipe
to shift right: the isochronous data pipe fiils the input bits
with zeros
- 20 -

ISOCCID: WO ___9847Z71A1 1 >

10

15

20

WO 98/47271 ‘ PCT/US97/06240
COMPARE CMP 7 subtracts the immediate value from the value in the src
CMP1 register, or subtracts the value in the src register from the
value in the dest register, but does not store the result; sets
the Z bit according to the result of the subtraction -
ADD ADD 8 Adds value in src register to the immediate value or the
ADDI value in dest register and stores the result in the dest register
SUBTRACT SUB 9 Subtracts the immediate value from the value in the src
SUBI register, or subtracts the value in the src register from the
value in the dest register and stores the result in the dest
register
MULTIPLY MULT A Multiplies the immediate value by the value in the src
MULTI register, or multiples the value in the src register by the value
in the dest register and stores the result in the dest register
: u
c |
D
E
i |
BRANCH BRA 10 Branch to the control store address contained in_the imm “
field
BRANCH BZ 11 Branch to the control store address contained in the imm
ON ZERO field if the result of the dest field from the previous
operation was equal to zero
BRANCH ON BNZ i2 Branch to the control store address contdined in the imm
NOT ZERO field if the result of the dest field from the previous
operation was not equal to zero
13
BRANCH TO BSR 14 Decrement the stack pointer. save the address of the
SUB following instructior: --:: the stack and branch to the CS
address contained in thiz imm field
BRANCH TO BSRZ 15 If the result of the dest field from the previous operation was
SUB ON ZERO equal to zero, then decrement the stack pointer, save the
address of the following instruction on the stack and branch
to the CS address contained in the immediate field
BRANCH TO BSRNZ 16 If the result of the dest field from the previous operation was
SUB ON NOT not equal to zero, then decrement the stack pointer, save the
ZERO address of the following instruction on the stack and branch
to the CS address contained in the imm field
17

NSTOCID: <WO___9847271A1_1_>

10

15

8]
v 1)

WO 98/47271 . . . PCT/US97/06240

RETURN RET 18 Branch to the instruction at the address contained on the
stack; increment the stack pointer

For most of the operations listed in Table IV, there are included two mnemonic
instructions. The mnemonic instruction which includes an “I”’ specifies the operation is to
be conducted using the immediate value. The mnemonic instruction which does not
include an “I” specifies the operation is to be conducted between the values in the source
and destination registers.

When a MOVE operation is performed, the value in the register specified in the
source field src is moved to the register specified in the destination field dest. If the
register specified in the source field src is a thirty-four bit register and the register
specified 1n the destination field dest is a thirty-two bit register, the high order two bits
will be lost. If the register specified in the source field src is a thirty-two bit register and
the register specified in the destination field dest is a thirty-four bit register, then the high
order two bits will both be set to a logical low voltage level.

When a MOVE Multiple operation is performed, a number of quadlets of data
specified by a count value are moved from the register specified in the source field src to
the register specified in the destination field dest. The count value is stored in the register
designated in the immediate field of the instruction. Preferably, for the MOVE Multiple
bperation, the register specified in the source field src is one of the data interface registers
DATA_O - DATA_3, which access a DMA channel, or the bus input register BUS IN.
Preferably, for this operation, the register specified in the destination field dest is one of
the data interface registers DATA_O - DATA_3, which access a DMA channel, or the bus
output register BUS_OUT.

During an AND operation, a logical AND operation is performed on the values in
the source field src and the destination field dest and the result is stored in the register

specified in the destination field dest. The ANDI form of this instruction uses the value in

~the immediate field instead of the value in the destination field as one of the operands and

stores the result in the register specified in the destination field dest. If the register
specified in the source field src is a thirty-four bit register and the register specified in the

destination field dest is a thirty-two bit register, the high order two bits will be lost. If the

-22 .

SDOCID: <WO __S847271A1_1_>

10

15

20

30

WO 98/47271 . ‘ PCT/US97/06240

register specified in the source field src is a thirty-two bit register and the register
specified in the destination field dest is a thirty-four bit register, then the high order two
bits will both be set to a logical low voltage level. If both the register specified in the
source field src and the register specified in the destination field dest are thirty-four bit
registers, then the AND operation is performed on all thirty-four bits.

During an OR operation, a logical OR operation is performed on the values in the
registers specified by the source field src and the destination field dest and the result is
stored in the register specified in the destination field dest. The ORI form of this
instruction uses the value in the immediate field instead of the value in the destination
field as one of the operands and stores the result in the register specified in the destination
field dest. If the register specified in the source field src is a thirty-four bit register and
the register specified in the destination field dest is a thirty-two bit register, the high order
two bits will be lost. If the register specified in the source field src is a thirty-two bit
register and the register specified in the destination field dest is a thirty-four bit register,
then the high order two bits will both be set to a logical low voltage level. If both the
register specified in the source field src and the register specified in the destination field
dest are thirty-four bit registers. then the OR operation is performed on all thirty-four bits.

When a SHIFT operation is performed, the value in the destination register dest is
shifted by the number of bits specified by the value in the source register src and the result
is stored in the register specified in the destination field dest. A positive shift value shifts
the value in the destination register to the right towards the least significant bit and zeros.
are used to fill in the shifted bits on the left beginning with the most significant bit. A
negative shift value shifts the value in the destination register to the left towards the most
significant bit and zeros are used to fill in the shifted bits on the right beginning with the
least significant bit. The SHIFTI form of this instruction shifts the value in the source
register by the number of bits specified in the immediate field and stores the result in the

register specified in the destination field. If the register specified in the source field src is

"a thirty-four bit register and the register specified in the destination field dest is a thirty-

two bit register. the high order two bits will be lost. If the register specified in the source

field src is a thirty-two bit register and the register specified in the destination field dest is

.23 -

NSDOCID: <WOQ ___S847271A1 _1_>

10

15

WO 98/47271 ‘ : ‘ PCT/US97/06240

a thirty-four bit register, then the high order two bits will both be set to a logical low
voltage level. If both the register specified in the source field src and the register
specified in the destination field dest are thirty-four bit registers, then the shift operation is
performed on only the low order thirty-two bits.

When a CMP operation is performed, the value in the source register src is
subtracted from the value in the destination register dest. If the result of the CMP
operation is a positive value, the Z bit is set to a logical high voltage level. If the result
of the CMP operation is a negative or zero value, the Z bit is set to a logical low voltage
level. The results of the CMP operation are not stored anywhere. The CMPI form of this
instruction subtracts the immediate value from the value in the source register src, and sets
the Z bit as specified above, according to the result. This instruction also does not store
the result of the operation. _

When an ADD operation is performed, the value in the source register src is added
to the value in the destination register dest and the result is stored in the destinat;on
register dest. The ADDI form of this instruction adds the value in the source register src
to the immediate value and stores the result in the destination register dest. If the register
specified in the source field src is a thirty-four bit register and the register specified in the
destination field dest is a thirty-two bit register, the high order two bits will be lost. If the
register specified in the source field src is a thirty-two bit register and the register
specified in the destination field dest is a thirty-four bit register, then the high order two
bits will both be set to a logical low voltage level. If both the register specified in the
source field src and the register specified in the destination field dest are thirty-four bit
registers, then the ADD operation is performed on only the low order thirty-two bits.

When a SUB operation is performed, the value in the destination register dest is
subtracted from the value in the source register src and the result is stored in the
destination register dest. The SUBI form of this instruction subtracts the immediate vaiue

from the value in the source register and the result is stored in the destination register dest.

" If the register specified in the source field src is a thirty-four bit register and the register

specified in the destination field dest is a thirty-two bit register, the high order two bits

will be lost. If the register specified in the source field src is a thirty-two bit register and

- 24 -

NSOCCID: «<WO __9847271A1_1_>

10

20

[}
(94}

WO 98/47271 ‘ . PCT/UIS97/06240

the register specified in the destination field dest is a thirty-four bit register, then the high-
order two bits will both be set to a logical low voltage level. If both the register specified
in the source field src and the register specified in the destination field dest are thirty-four
bit registers, then the SUB operation is performed on only the low order thirty-two bits.

When a MULT operation is performed, the value in the source register src is
multiplied by the value in the destination register dest and the result is stored in the
destination register dest. The MULTI form of this instruction multiplies the immediate
value by the value in the source register src and the result is stored in the destination
register dest. [f the register specified in the source _ﬁeld src is a thirty-four bit register and
the register specified in the destination field dest is a thirty-two bit register, the high order
two bits will be lost. If the register specified in the source field src is a thirty-two bit
register and the register specified in the destination field dest is a thirty-four bit register,
then the high order two bits will both be set to a logical low voltage level. If both the
register specified in the source field src and the register specified in the destination field
dest are thirty-four bit registers, then the MULT operation is performed on only the low
order thirty-two bits.

When a BRANCH operation is performed, the isochronous data pipe 20 branches to
the control store address contained in the low order byte of the source field src. The
source field src can specify a register or an immediate value.

When a BRANCH ON ZERO operation is performed, the isochronous data pipe 20
branches to the control store address contained in the low order byte of the source field src
if the result of the last arithmetic or move control store instruction was equal to zero. The
source field src can specify a register or an immediate value.

When a BRANCH ON NOT ZERO operation is performed, the isochronous data
pipe 20 branches to the control store address contained in the low order byte of the source
field src if the result of the last arithmetic or move control store instruction was not equal
to zero. The source field can spécify a register or an immediate value.

When a BSR operation is performed, the address of the next control store

instruction is pushed onto the-stack and the isochronous data pipe 20 branches to the -

25 -

NSDCCID: WO ___984T271A1 | >

10

15

25

WO 98/47271 . . PCT/US97/06240

control store address contained in the low order byte of the source field src. The source
field src can specify a register or an immediate value.

When a BSR ON ZERO operation is perfdrmed, if the result of the last arithmetic
or move control store instruction was equal to zero, the address of the next control store
instruction is pushed onto the stack and the isochronous data pipe 20 branches to the
control store address contained in the low order byte of the source field src. The source
field src can specify a register or an immediate value.

When a BSR ON NOT ZERO operation is performed, if the result of the last
arithmetic or move control store instruction was not equal to zero, the address of the next
control store instruction is pushed onto the stack and the isochronous data pipe 20
branches to the control store address contained in the low order byte of the source field
src. The source field src can specify a register or an immediate value.

When a RETURN operation is performed, the last control store address is popped
off of the stack and the isochronous data pipe 20 branches to that address.

The isochronous recording format defined in the Serial Bus Protocol defines a
standard format for recording a stream of isochronous data as transmitted over the bus
structure 58. The isochronous data pipe 20 of the present invention can be programmed to
transform a received stream of isochronous data into the isochronous recording format,
according to the Serial Bus Protocol. Correspondingly, the isochronous data pipe can also
be programmed to create a stream of isochronous data from a stream of data in the
isochronous recording format. A stream of data in the isochronous recording format is
illustrated in Figure 5. It should be noted that the data stream illustrated in Figure 5
begins on an isochronous cycle boundary.

In Figure 5, the data stream 94 includes data packets which are inciuded for each
isochronous cycle in both channels A and B. An offset column 92 is included in Figure 5,
to show the offset of the beginning of each horizontal row. The header horizontal rows

each include four bytes. The data section will include as many bytes as necessary to

" transfer the data packet. The header for each packet includes a seconds field. a cycle

number field, and a cycle field. Each subheader for each channel within each packet

<26 -

NSDOCID <WO ___SB47271A1_1_>

< WO 98/47271 . . PCT/US97/06240

includes a data_length field, a tag field tg, a channel field, a data field and a'synchronizing
field sy. The subheader is then followed by the data section within the packet.

EXAMPLE: Converting Isochronous Data To The Isochronous Recording Format

5
The control store program included in Table V below illustrates an example of how
the isochronous data pipe 20 of the present invention can be programmed by an
application to capture an isochronous stream of data consisting of channels 3 and 5, map
channel 3 to channel 7 and channel 5 to channel 9 and then send the resulting stream of
10 data to DMA channel O in the isochronous recording format.
TABLE V
15 CS_addr_CS: ANDI BUS_In, O0XFFFFF000, D3 :mask cycle start packet
. OR! D3, 0Xcycle0, DATA_O ;Send it to DMA ¢ch 0
RET finished
CS_addr_3: BSR GET_QUAD ;Get the isoch header
20 ORI D2, 0X900, DATA_O :Map to channel 9 and output
BRA GET _DATA ;branch to get data field
CS_addr_3: BSR GET_QUAD ;Get the isoch header
ORI D2, 0X700, DATA 0O ;Map to channel 7 and output
25
GET_DATA: SHIFTI D2, 16, D2 :Get the data length
ADD! D2, 3, D2 ;Wrap it up
ANDI D2, FFFC, D2 ;and mask
BZ HALT ;Finished if zero
30
MOVE_DATA: MOVE BUS_IN, DATA 0 ;Get the next quadlet
SUBI D2, 4, D2 ;Decrement quadlet counter
BNZ MOVE_DATA ;Continue if not zero
35 HALT: RET ;Else, we're done
GET_QUAD: ANDI BUS_IN, 0XFFFFCOOF, D2 :Get the hdr w/o ch or tcode
ORI D2, 0Xdata0, D2 ;Set the data marker
RET :And return
40
-27 -

NSDOCID: <WO____9847271A1 >

(/]

10

15

20

9%}
i

40

WO 98/47271

. PCT/US97/06240

EXAMPLE: Converting From Isochronous Recording Format

The control store program included in Table VI below illustrates an example of how the

isochronous data pipe 20 of the present invention can be programmed by an application to

take a stream of data at DMA channel 3 which is in the isochronous recording format and

create a stream of isochronous data for transmission over the bus structure 58. The source

stream of data contains isochronous channels 7 and 9. This control store program maps

channel 7 to channel | and channel 9 to channel 2. Note that the program illustrated in

Table VT requires that the first quadlet of data presented at DMA channel is a cycle start

quad]let.

CS_output:

TEST_TYPE:

CONT_HDR:

CH_7:

CONT_DATA:

CONT_OUT:

DISCARD:

NSDOCID: <WO___9847277A1_{ >

MOVE
MOVEI

ANDI
CMP{
BZ
MOVEI]
MOVE
BRA

ANDI
ANDI
ORI

CMPI
BZ
CMPI
BNZ

ORI
BRA

ORI

BSR
BZ
MOVE
SUBI
BRA

BSR

TABLE VI

DATA_3, DO

0x100000000, D3

DO, 0XFO, D1
D1, 0Xdata0
CONT_HDR

0X300000000, D3

DATA_3, DO
TEST_TYPE

DO, 0X3F00, D1
DO, OXFFFFCOOF, D3
DO. 0X'isoch’0, D3

D1, 0X700
CH_7

D1, 0X900
DISCARD

D3, 0X200, BUS_OUT
CONT_DATA"

D3, 0X100, BUS_OUT
GET_COUNT
CS_output

DATA_3, BUS_OUT
D3, 4, D3
CONT_OUT

GET_COUNT

- 28 -

;Get a quadlet
;Prepare the output register

:Test the op code

;Is this a packet?

;Continue processing if so
;Else set the cycle start flag
;And get the next quadlet
;Then test this one also

;get the ch number
:Clear tcode and ch fields
;restore tcode

:Is this channel 77
:Branch to handle if so
.is this channel9?
;discard if not

:Else this is ch 9
;Then continue with data field

;map to channel |

;Get quadlet count
;continue if not

:send something out
;decrement quadlet counter
;and continue outputting

;Get quadlet count

10

tJ
Lh

30

WO 98/47271 ‘ . PCT/US97/06240

CONT_DIs: BZ CS_output ;Continue if not

MOVE DATA 3, DO ;Else, get a quadlet

SUBI D3, 4,D3 ;Decrement quadlet counter

BRA CONT_DIS .;Continue to discard
GET_COUNT: SHIFTI D3, 16, D3 ;Get the data length

ADDI D3, 3, D3 ;Wrap it up i

ANDI D3, FFFC, D3 ;And mask

RET ;then return

Formats for carrying digital consumer audio and video data over an IEEE 1394
format bus via an isochronous channel contain absolute time stamps which are inserted by
the sender and used at the receiver to recreate the timing information necessary to decode
the stream of data. Similarly, non-consumer audio and video storage devices, such as a
hard disk drive, will also modify this embedded time stamp information such that when
the data is played back at a later time', a consumer device receiving the data will function
properly.

The isochronous data pipe 20 is first initialized by an application before it can
transfer isochronous data. Once initialized, the application uses the control register to
change the operational state of the isochronous data pipe 20. The current operational state
is completely defined by the value in the current channel mask register and the information
contained in the low order byte of the status register.

In order to change the state of the isochronous data .pipe 20, the applicatioh
programs a new channel mask value into the pending channel mask register and a new
operational state into the control register. In the same register access to the control
register, the application also sets the go bit and programs an event into the event field.
When the programmed event occurs, the isochronous data pipe 20 transfers the value in
the pending channel mask register to the current channel mask register. The isochronous
data pipe 20 also transfers the information in the low order byte of the control register into
the low order byte of the status register.

In order to stop the operation of the isochronous data pipe 20, the application
programs a value of one into the pending channel mask register and a logical low voltage
level inio the transmit enable bit in the control register. As with any state change, the

application also sets the go bit and programs an event into the event field of the control

29 .

NSDOCID: <WO___S847271A1 _[_>

10

I5

20

30

WO 98/47271 ‘ ' PCT/US97/06240

register. When the event occurs the value in the current channel mask register becomes
zero and the transmit enable bit in the status register is pulled to a logical low voltage
level, thereby stopping the operation of the isochronous data pipe 20. When the operation
of the isochronous data pipe 20 is stopped, the active bit in the status register is also
pulled to a logical low voltage level.

In order to activate the isochronous data pipe 20, the application first loads a
control store program and programs the proper control store offsets into the control store
address register file. The pending channel mask register is then programmed with a bit
mask of the channels which the isochronous data pipe 20 is to receive. If the isochronous
data pipe 20 is not receiving data, the value in the pending channel mask register is
programmed to zero. The go bit in the control register is set to a logical high voltage
level to indicate a state change. The transmit enable bit in the control register is set to a
logical high voltage level if the isochronous data pipe 20 is transmitting isochronous data.
The stop on error bit in the control register is set to a logical high voltage level if the
isochronous data pipe 20 is to stop operation on any error. [f the isochronous data pipe 20
is transmitting isochronous data, the output enable bits in the control register which
correspond to the DMA channels involved in transmitting isochronous data are set to a
logical high voltage level. The event field in the control register is programmed to an
event on which the isochronous data pipe 20 is to change state.

The asynchronous data pipe 26, as stated above. automatically gener:..:s
transactions necessary to complete asynchronous data transfer operations for an application
over the bus structure 58. In an alternate embodiment of the isochronous data pipe 20 of
the present invention, the isochronous data pipe 20 can be programmed to transfer and
receive both isochronous and asynchronous data. Accordingly, in this embodiment, the
asynchronous data pipe 26 and the corresponding FIFO 32 are not necessary.
Furthermore. because the isochronous data pipe 20 s the only logical biock within the link
circuit, the multiplexer 40 and demulitiplexer 42 are also not necessary.

As described above, the isochronous data pipe 20 of the preferred embodiment is
programmed to execute a control store program and perform a series of operations on a

stream of isochronous data. In this alternate embodiment, the isochronous data pipe 20

- 30 -

{SOOCID: <WO ___ 9847271A1 _i_>

WO 98/47271 ‘ ‘ PCT/US97/06240

also can be programmed to send and receive asynchronous data. In this embodiment, the
isochronous data pipe 20 appears as a virtual asynchronous data pipe and is programmed
to generate the transactions necessary to complete asynchronous data transfer operations, as
well as generate the appropriate headers when sending data and strip headers from
5 received data, as described in U.S. Patent Application Serial Number 08/612,321 filed on
the same date as the present application and entitled “Asynchronous Data Pipe For
Automatically Managing Asynchronous Data Transfers Between An Application And A
Bus Structure.”
In this alternate embodiment, the isochronous data pipe 20 will send or receive
10 both isochronous and asynchronous data. The isochronous data pipe 20 is programmed by
an application to execute an appropriate program for manipulating either an isochronous or
asynchronous stream of data, as necessary. When receiving or transmitting asynchronous
data the isochronous data pipe 20 is programmed to automatically generate the read or
write transactions necessary to complete the data transfer operation over the appropriate
15 range of addresses. The isochronous data pipe will appropriately automatically increment
the value in the destination offset address field for each transaction according to the length
of each data packet, unless an incrementing feature has been disabled, signalling that the
transactions are to take place at a single address.
- --The present invention has been described in terms of specific embodiments
20 incorporating details to facilitate the understanding of the principles of construction and
operation of the invention. Such reference herein to specific embodiments and details
thereof is not intended to limit the scope of the claims appended hereto. It will be
apparent to those skilled in the art that modifications may be made in the embodiment

chosen for illustration without departing from the spirit and scope of the invention.

NSDOCID: <WO ___ 9847271A1_1_>

WO 98/47271 . ‘ PCT/US97/06240

CLAIMS

We Claim:
1 1. A method of controlling streams of data between an application and a bus
2 structure comprising the steps of:
3 receiving a stream of data thereby forming a received stream of data;
4 obtaining programmed instructions regarding the received stream of data;
5 c. generating an output stream of data by manipulating the received stream of
6 data according to the programmed instructions.
1 2. The method as claimed in claim 1 wherein the received stream of data is an
2 isochronous stream of data.
1 3. The method as claimed in claim 2 further comprising the step of
2 determining a channel number for the received stream of data, wherein the programmed-
3 instructions are obtained from a memory address corresponding to the channel number of
4 the received isochronous stream of data.
1 4. * The method as claimed in claim 3 wherein the bus structure is an IEEE
2 1394 standard bus structure.
1 5. The method as claimed in claim | wherein the received stream of data is
2 one of an isochronous stream of data and an asynchronous stream of data.
| 6. The method as claimed in claim 35 further comprising the step of
2 determining if the received stream of data is an isochronous stream of data or an
3 - asynchronous stream of data.

NSDOCID: <WO___9847Z71A1_i_>

WO 98/47271 . . PCT/US97/06240

1 7. The method as claimed in claim 6 wherein the programmed instructions are.
2 obtained from a memory address -corresponding to the channel number if the received

3 stream of data is an isochronous stream of data and from a memory address corresponding
4 to asynchronous data if the received stream of data is asynchronous stream of data.

1 8. The method as claimed in claim 7 wherein the bus structure is an [EEE

2 1394 standard bus structure.

1 9. An apparatus for controlling bidirectional streams of data between an

2 application and a bus structure comprising:

3 a. means for recetving a stream of data and forming a received stream of data;
4 means for obtaining programmed instructions regarding the received stream
5 of data;

6 c means for generating an output stream of data coupled to the means for

7 obtaining for manipulating the received stream of data according to the

8 programmed instructions and providing an output stream of data.

1 10. The apparatus as claimed in claim 9 wherein if the received stream of data

89

is received from the application, the output stream of data is provided to the bus structure,

L2

and if the received stream of data is received from the bus structure, the output stream of

4 data is provided to the application.

1 11. The apparatus as claimed in claim 9 further comprising a memory coupled
2 to the means for obtaining and configured for coupling to the application for storing the

3 programmed instructions.

1 12. The apparatus as claimed in claim 11 wherein the received stream of data is
2 an isochronous stream of data.

NSDOCID: <WO ____9847271A7 1 >

WO 98/47271 ‘ , . PCT/US97/06240

1 13. The apparatus as claimed in claim 12 wherein the programmed instructions
2 are stored at a memory address corresponding to a channel number on which the received

stream of data is transmitted.

14. The apparatus as claimed in claim 13 wherein the bus structure is an IEEE

2 1394 standard bus structure.
15. The apparatus as claimed in claim 11 further comprising means for
2 determining coupled to the means for receiving for determining if the received stream of

data is an isochronous stream of data or an asynchronous stream of data.

1 16. The apparatus as claimed in claim 15 wherein the programmed instructions
2 are stored at a memory address corresponding to a channel number on which the received
3 stream of data is transmitted if the received stream of data is an isochronous stream of
4 data and at a memory address corresponding to asynchronous data if the received stream
5 of data is an asynchronous stream of data.
1 17. The apparatus as claimed in claim 16 wherein the bus structure is an [EEE
2 1394 standard bus structure.

- 34 -

ISDOCID: <WO____9847271A1 1 _>

WO 98/47271 ‘ ' PCT/US97/06240

1 18. An apparatus for controlling and managing data transfer operations between
2 one or more applications and a bus structure comprising:
3 a. an isochronous data pipe configured for coupling between the one or more
4 applications and the bus structure, including:
5 1. means for receiving a stream of data and
6 forming a received stream of data;
7 ii. means for obtaining programmed instructions
8 regarding the received stream of data; and
9 1i1. means for generating an output stream of data
10 coupled to the means for obtaining for
11 manipulating the received stream of data
12 according to the programmed instructions; and
13 b a physical bus interface configured for coupling to the bus structure for
14 placing data on the bus structure and obtaining data from the bus structure.
1 19. The apparatus as claimed in claim 18 further comprising a memory coupled
2 to the means for obtaining and configured for coupling to the application for storing the
3 programmed instructions.
1 20. The apparatus as claimed in claim 19 further comprising an asynchronous
2 data pipe for automatically controlling asynchronous data transfer operations to and from
3 the application over the bus structure including:
4 a. means for receiving instructions configured for coupling to the application
5 for receiving instructions regarding an asynchronous data transfer operation;
6 and
7 b. means for automatically generating transactions pecessafy to complete the
8 asynchronous data transfer operation between the application and a node
9 coupled to the bus structure.

ISDOCID: <WO___9847271A1 I_>

WO 98/47271 ’ . PCT/US97/06240

1 21. The apparatus as claimed in claim 20 further comprising a multiplexing

2 circuit coupled to the isochronous data pipe, the asynchronous data pipe and the physical
3 bus interface for transmitting data packets from the isochronous data pipe and the

4 asynchronous data pipe to the bus structure.

1 22. The apparatus as claimed in claim 21 further comprising a demultiplexing
2 circuit coupled to the isochronous data pipe, the asynchronous data pipe and the physical
3 bus interface for routing data packets obtained from the bus structure to an appropriate one
4 of the isochronous data pipe and asynchronous data pipe.

1 23. The apparatus as claimed in claim 22 wherein the bus structure is an [EEE
2 1394 standard bus structure.

1 24. The apparatus as claimed in claim 19 wherein the isochronous data pipe will
2 execute programmed instructions regarding both isochronous and asynchronous received

3 streams of data.

1 25. The apparatus as claimed in claim 24 wherein the programmed instructions
2 are stored at a memory address corresponding to a channel number on which the received
3 stream of data is transmitted if the received stream of data is an isochronous stream of

4 data and at a memory address corresponding to asynchronous data if the received stream
5 of data is an asynchronous stream of data.

1 26. The apparatus as claimed in claim 25 wherein the bus structure is an IEEE
2 1394 standard bus structure.

1 27. An isochronous data pipe configured for coupling between an application
2 and an IEEE 1394 standard bus structure for managing isochronous data transfer

3 operations to and from the application over the bus structure comprising:

- 36 -

NSDOCID: <WO__9847271A1 _1_>

WO 98/47271 . . PCT/US97/06240

4 a. a control store memory, wherein the application stores instructions for -

5 manipulating an isochronous stream of data;

6 b a receiving circuit for receiving a stream of data and forming a received

7 stream of data;

8 C. a manipulating circuit coupled to the control store memory and to the

9 receiving circuit for obtaining instructions regarding the received stream of
10 data, manipulating the received stream of data according to the programmed
11 instructions and providing an output stream of data.

-37 -

NSDOCID: WO ___8847271A1 _I_>

WO 98/47271

1/5

101

SERIAL
BUS

MANAGEMENT

. PCT/US97/06240

TRANSACTION (AYER

4

-

LINK LAYER

[

A

NSDOCID: <WO___8847271A1_|_>

FIG. 1

(PRIOR ART)

Y

PHYSICAL L[AYER

PCT/US97/06240

2/5

WO 98/47271

8S
SN

-

%

AHd

949

EAIENEL.]

g1

YOLINON F10A0

267

SIALL FTTOAI

A
0s]

===
l

SILUNSNVYL

QvN

X [

SYILSI9FY T0HINOD

XHea
9z
753 i
= dv It
\w& T [5Ese
ze mmk
WQN
| qa
o e [SEISI978
QMM 144 \%

]

JOVAYIINI NOILYINTddY F
1 gl

vl

\ A

NOLLYOl lddV

A |

NOLLY I ddY

2>

NSDOGID: <WO __9847271A1 _|_>

WO 98/47271

SCOCID: <WO___3847271A1_1_>

. . PCT/US97/06240
3/5

f 82 r 84 fao
: ' FUNCTION
OFFSET | R/W { BYTE 0 (msb) | BYTE 1| BYTE. 2 | BYTE 3 (Isb)
0 RW CYCLE TIME (20 BITS)
4 RW CONTROL
8 RW STATUS
C
10
14
18
1C
20 RW pending_ch_rmask_hi
24 RW pending_ch_mask_lo
28 RO ch_mask_hi
2C RO ch_mask_lo
30
J4 RW | CS_output CS_addr_CS
38 RW | CS_addr_0O
3C RW
40 RW
44 RW
48 | RW
4C RW
50 RW
54 RW
58 RW
5C RW
60 RW
64 RW
68 RW
6C RW
70 RW
74 RW CS_addr_63

IDP Register File

FiG. 3

WO 98/47271 . . PCT/USY7/06240
4/5
[a0

NAME REG | WIDTH | SRC/DEST? REGISTER USAGE
CODE A.
mM_| 0 | 34 | SRC IMMEDIATE _VALUE
BUS_IN | 1 | 32 | SRC RECEIVE_FIFO
BUS_OUT | 2 | 34 | DEST | OUTBOUND ISOCHRONOUS FIFO
3
00 4 | 34 | SRC/DEST | DATA REGISTER 0
D1 5 | 34 | SRC/DEST | DATA_REGISTER 1
D2 6 | 34 | SRC/DEST | DATA_REGISTER 2
03 7 | 34 | SRC/DEST | DATA REGISTER 3
D4 8 | 34 | SRC/DEST | DATA REGISTER 4
D5 9 | 34 | SRC/DEST | DATA REGISTER 5
D6 A | 34 | SRC/DEST | DATA REGISTER 6
07 B | 34 | SRC/DEST | DATA REGISTER 7
c
D
E
F
DATA_O | 10 | 32 | SRC/DEST | DATA INTERFACE DMA CHANNEL O
DATA_1 | 11 | 32 | SRC/DEST | DATA INTERFACE DMA CHANNEL 1
DATA_2 | 12 | 32 | SRG/DEST | DATA INTERFACE DMA CHANNEL 2 |
DATA_3 | 13 | 32 | SRC/DEST | DATA INTERFACE DMA CHANNEL 3
14 -
15
16
17
18
19
1A
18
1C
10
1€
1F

FIG. 4

NSDOCID: <WO__2847271A1 _|_>

/4
WO 98/47271 ‘ ’ PCT/US97/06240

5/5
_ 94
92 S
OFFSET DATA
v seconds cycle_number N 0000 cycle 0000
4 . data_length tg ch A data sy

data_length bytes

data_length tg ch B data sy

data_.length bytes

seconds cycle_number N+1 0000 cycle 0000
data__length tg ch A data sy

data_length bytes

data__length tg [ch B data l sy

data_length bytes

seconds | cycle_number N+2 0000 cycle 0000

data_length tg ch A data sy

data_length bytes

FlG. 6

ISCOCID: <WO___9847271A1 I _»

- INTERN@NAL SEARCH REPORT N nal Application No
PCT/US 97/06240

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 HO04L29/06

According to International Patent Classification(IPC) or to both national classification and 1PC

8. FIELDS SEARCHED

Minimum documentation searched (classitication sysiem followed by classitication symbals)

IPC 6 HO4L

Documentaucn searched other than minimumdocumantation ic tha axtent that such documents are included in the tields ssarched

Electromc oata base consulted during the international search (name of data base and. where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category - | Citation ot document. with indication. whers appropnate. of the refevant passages Relevant to claim No.
X KAISERSWERTH M: "THE PARALLEL PROTOCOL 1,9-11,
ENGINE" 18-20
IEEE / ACM TRANSACTIONS ON NETWORKING,
vol. 1, no. 6, 1 December 1993, .
pages 650-663, XP000430135
Y see paragraph 11 2,5,6,
12,15,
21,22,
24,27

see paragraph III
see paragraph IV

Furthar documants ara listed in the continuation of box C. Patent tamily members are iisted in annex.

' Special catsgories of citad documents : . . -
T later documant published aftar the intarnational filing date
ar prionty dat2 and not in contlict with the application but

A" document detining the general siate of the art whicn is not cted to understand the principie or thaory underlying the

considered to be of particuiar reievance

nventicn
“E" aearier document Sut published on or after tha internationat “X* decurment of particular relevance: the claimed invention
fling date cannot be considerad novel or cannot te considerad to
"L" document which may IRrow Jcubis on priorty cramm(s) or involve an inventive step when the doecument is takan alone

wiich is citec to rstasiish the pubiicatioridate of another

A " e { Y tai invention
ttation or other special reason (as speciied) ¢* decument ot particular relevance; the ctaimed inventio

cannot be considered to invelve an inventiva step when the

“0" document refernng to an orat disclosura, use. axnibition cr document is combned with one Or more Other such gocu-
othar means ments. such combination being obvious to a person skiled
“P* document published prior to the intemationai filing date but in the an.
tater than the pricnty date ctaimed “&" document member of the same patent family
Date of tha actuai complation ot tneinternational search Date of maiiing of tha international searcn report
31 July 1998 06/08/1998
Name and maing address cf the 1SA Authonzed officar

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Riswiik

Tel. {(+31-70) 340-2040. Tx. 31 651 apo ni,
2 Fax: (+31-70) 340-3016 : Canosa Areste, C

Formn PCTASA/210 (second shaet) {Juiy 1992)

"page 1 of 2

NSDOCID: <WO___8847271A1_I_>

LNTERNAT'A.L SEARCH REPORT

al Appiication No

PCT7US 97/06240

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category - | Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

KRISHNAKUMAR A S ET AL: "THE PROGRAMMABLE
PROTOCOL VLSI ENGINE (PROVE)"

TEEE TRANSACTIONS ON COMMUNICATIONS,

vol. 42, no. 8, 1 August 1994,

pages 2630-2642, XP000462378

see paragraph I

see paragraph II

see paragraph V

EP 0 696 853 A (SONY CORP) 14 February
1996

see abstract
see figure 1

TEENER M: "A BUS ON A DIET - THE SERIAL
BUS ALTERNATIVE AN INTRODUCTICON TO THE
P1394 HIGH PERFORMANCE SERIAL BUS™
INTELLECTUAL LEVERAGE, SAN FRANCISCO, FEB.
24 - 28, 1992,

no. CONF. 37, 24 February 1992, INSTITUTE
OF ELECTRICAL AND ELECTRONICS ENGINEERS,
pages 316-321, XP000340753

see the whole document

1,9-11,
18-20

2,5,6,
12,15,
21,22,24

27

1-26

Fom PCT/ISAI210 (contnuaton of secend sheen {July 1992)

ISDOCID: WO __3847271A1 _|_>

page 2 of 2

into

. INTERNATIONAL SEARCH REPORT 1
. _ '
P

n patent family members

al Apptication No

S 97/06240

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 0696853 A 14-02-1996 JP 8032644 A 02-02-1996
CN 1120769 A 17-04-1996
us 5640392 A 17-06-1997

Form PCTAISA/210 (patent iarmily annexj iJuy 1992)

NSOOCID: <WO__384727 1A% _)_>

	2001-09-13 Foreign Reference

